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Abstract 

Objectives: This study aims to develop and evaluate an AI-assisted system for detecting 

urological pathologies using cystoscopy images. 

Materials and Methods: A dataset comprising 500 pathological and 500 healthy cystoscopy 

images was collected from the urology clinic of training and research hospital. Images were 

obtained using three different endovision systems (Karl Storz [Germany], Stryker [USA], 

Richard Wolf [Germany]). The dataset was preprocessed, augmented, and used to train a 

Convolutional Neural Network (CNN) model to classify images as either normal or 

pathological. The model’s performance was evaluated on a test set comprising 100 pathological 

and 100 healthy images, using metrics such as accuracy, sensitivity, specificity, and F1-score. 

Statistical analyses were performed using IBM SPSS version 25.0, with a p-value of <0.05 

considered significant. 

Results: The model achieved a sensitivity of 94% for detecting pathological cases and a 

specificity of 58% for correctly identifying healthy cases. For pathological images, precision, 

recall, and F1-score were 0.69, 0.94, and 0.80, respectively, while for healthy images, these 

metrics were 0.91, 0.60, and 0.72. The overall accuracy of the model was recorded as 76%. 

Conclusion: The AI-assisted cystoscopy image analysis system demonstrates high sensitivity 

in detecting urological pathologies but requires further improvements to enhance specificity. 

Future studies should focus on increasing dataset diversity and improving the model’s ability 

to distinguish between benign and malignant features. The integration of higher-quality images 

and advanced AI techniques holds great potential for enhancing the model’s success and 

improving diagnostic accuracy. 

Keywords: artificial ıntelligence, cystoscopy, bladder cancer, deep learning, ımage analysis 

Özet 

Amaç: Bu çalışma, sistoskopi görüntülerini kullanarak ürolojik patolojilerin tespitine yönelik 

AI destekli bir sistem geliştirmeyi ve değerlendirmeyi amaçlamaktadır. 

Gereçler ve Yöntemler: Eğitim ve Araştırma Hastanesi Üroloji Kliniğinde; 500 patolojik ve 

500 sağlıklı sistoskopi görüntüsünden oluşan bir veri seti toplanmıştır. Görüntüler, üç farklı 

endovizyon sistemi (Karl Storz [Almanya], Stryker [ABD], Richard Wolf [Almanya]) 
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kullanılarak elde edilmiştir. Veri seti ön işleme tabi tutulmuş, artırılmış ve bir Konvolüsyonel 

Sinir Ağı (CNN) modeli, görüntüleri normal veya patolojik olarak sınıflandırmak üzere 

eğitilmiştir. Modelin performansı, doğruluk, hassasiyet, özgüllük ve F1 skoru gibi metriklerle, 

100 patolojik ve 100 sağlıklı görüntüden oluşan bir test setinde değerlendirilmiştir. İstatistiksel 

analizler IBM SPSS versiyon 25.0 ile yapılmış, p <0.05 anlamlı kabul edilmiştir. 

Bulgular: Model, patolojik vakaların tespiti için %94 hassasiyet ve sağlıklı vakaların doğru 

sınıflandırılması için %58 özgüllük sağlamıştır. Patolojik görüntüler için kesinlik, geri çağırma 

ve F1 skoru sırasıyla 0.69, 0.94 ve 0.80 olarak bulunurken, sağlıklı görüntüler için bu değerler 

0.91, 0.60 ve 0.72’dir. Modelin genel doğruluğu %76 olarak kaydedilmiştir. 

Sonuç: AI destekli sistoskopi görüntü analiz sistemi, ürolojik patolojilerin tespitinde yüksek 

hassasiyet göstermektedir, ancak özgüllüğün artırılması için daha fazla iyileştirme 

gerekmektedir. Gelecek çalışmalarda, veri setinin çeşitliliğini artırmaya ve modelin benign ve 

malign özellikleri ayırt etme yeteneğini geliştirmeye odaklanılmalıdır. Daha kaliteli 

görüntülerin entegrasyonu ve ileri yapay zeka tekniklerinin kullanımı, modelin başarısını 

artırma açısından büyük bir potansiyel sunmaktadır. 

Anahtar kelimeler: yapay zeka, sistoskopi, mesane kanseri, derin öğrenme, görüntü analizi 

 

Introduction 

Artificial Intelligence (AI) and machine learning (ML) are rapidly advancing fields with 

the potential to revolutionize medical practice. AI refers to the ability of computer programs to 

learn and solve problems autonomously. Within AI, ML involves building mathematical 

models from input data to make decisions without human intervention. A subset of ML, known 

as deep learning (DL), uses multi-layered neural networks that mimic brain neurons' structure 

and activity, significantly enhances image recognition through neural networks [1]. 

One specific class of DL algorithms, the Convolutional Neural Network (CNN), is 

particularly well-suited for image recognition and analysis due to its architecture, which 

resembles the visual cortex. CNNs have driven substantial breakthroughs in medical image 

recognition, enabling AI to classify medical images with high accuracy. In the past, ML models 

relied on hand-crafted features such as color, intensity, and texture, but DL has surpassed these 

by automatically learning these features from vast amounts of data [2]. 
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AI's progress in medical imaging spans radiology, ophthalmology, dermatology, 

pathology, neurology, and gastroenterology, where systems like computer-aided diagnosis 

(CADx) and detection (CADe) have addressed limitations in clinical practice [3,4]. Advances 

in computing power and big data analytics further facilitate AI integration into medical practice. 

In urology, cystoscopy is a vital diagnostic tool for detecting urological pathologies. 

However, the interpretation of cystoscopy images relies heavily on the expertise and experience 

of clinicians, which can introduce variability and subjectivity into the diagnostic process. AI-

supported systems can mitigate these issues by providing consistent and accurate image 

analysis, potentially enhancing diagnostic accuracy and efficiency [5]. 

 This study develops and evaluates a CNN-based AI system for detecting urological 

pathologies from cystoscopy images. The system could be used both in clinical settings and at 

home, where patients might upload images captured using camera-equipped catheters for 

analysis, reducing the burden on healthcare professionals and offering a convenient monitoring 

tool for patients. 

Developing such an AI system requires a multidisciplinary approach, combining 

expertise in urology, computer science, and data analytics. The involvement of clinical experts 

ensures that the system is clinically relevant and meets the practical needs of healthcare 

providers and patients. Additionally, the economic and societal benefits of such a system could 

be substantial, improving early detection rates and reducing healthcare costs through more 

efficient patient monitoring and follow-up. 

AI-supported cystoscopy image analysis represents a promising advancement in 

urological diagnostics. This paper outlines the development of our AI system, details the 

methodology, and presents the results of our evaluations. By improving diagnostic accuracy 

and providing a scalable solution for patient monitoring, our system aims to enhance the overall 

quality of urological care. 

Materials and Methods 

Participants 

This study was conducted at the Urology Clinic of Training and Research Hospital. The 

study included patients over 18 years of age who underwent cystoscopy between January 2018 

and January 2024. Ethical approval for the study was obtained from the relevant institutional 

review board (08.07.2024-144011). All participants provided informed consent prior to 
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inclusion in the study. A total of 500 pathological and 500 healthy cystoscopy images were 

collected for analysis. 

The pathological images in this study were specifically from patients diagnosed with 

bladder cancer, including images from papillary or solid tumor formations observed during 

follow-up. These images were taken from atypical tissue areas, and no other pathologies were 

included in the evaluation beyond bladder cancer. The pathological images did not focus on a 

single bladder region but were representative of various areas. The decision to design the study 

this way was to avoid the complexity of interpreting fibrotic and hyperemic areas in previously 

resected regions, which can be challenging even for expert urologists. The healthy images were 

from patients with intact bladder tissue, with no recurrence observed post-endoscopic resection. 

Imaging Systems 

Cystoscopy images were acquired using three different endovision imaging systems: 

Karl Storz (Germany), Striker (USA), and Richard Wolf (Germany). Each system was equipped 

with different quality telescopes, including two “Karl Storz 30° Hopkins Telescope” and one 

“R. Wolf 30° 4.0 mm Telescope”. This resulted in a varied dataset with differing image qualities 

and resolutions, which provided a comprehensive basis for training and evaluating the AI 

model. 

Data Processing and Model Training 

The collected cystoscopy images were classified into two categories: normal and 

pathological. Normal images were characterized by a smooth, cream-colored epithelial lining 

with non-prominent vasculature and minimal trabeculation. Pathological images were 

identified by the presence of raised, atypical structures such as tumors, which appeared distinct 

from the normal bladder lining. 

To prepare the images for model training, they were resized to a consistent dimension 

of 224x224 pixels and normalized to a range of 0 to 1. Data augmentation techniques, including 

rotation, flipping, and brightness adjustments, were applied to increase the variability and 

robustness of the dataset. 

A Convolutional Neural Network (CNN) was employed for image analysis and 

classification. The CNN architecture included multiple convolutional and pooling layers 

designed to extract relevant features from the images, followed by fully connected layers for 
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classification. The model was implemented using the TensorFlow and Keras libraries in Python 

[6]. 

The model was trained using a supervised learning approach. During training, the CNN 

learned to distinguish between normal and pathological images by optimizing the weights of 

the network to minimize the binary cross-entropy loss function. The Adam optimizer was used 

to update the model parameters, and the training process was monitored using validation data 

to prevent overfitting [7]. 

Training and Validation 

The dataset was split into training and testing sets, with 80% of the images used for 

training and 20% reserved for testing. The training process involved iterating over the training 

data for multiple epochs, with each epoch consisting of a forward pass to compute the output 

and a backward pass to update the model parameters based on the loss gradient. 

To enhance the model's generalization capabilities, k-fold cross-validation was 

employed. This technique involves partitioning the training data into k subsets and training the 

model k times, each time using a different subset as the validation data and the remaining 

subsets as the training data. The final model performance was averaged across the k folds to 

obtain a robust estimate of its accuracy, sensitivity, and specificity [8]. 

Performance Metrics 

The performance of the trained model was evaluated using the test set. Key metrics 

included accuracy, precision, recall (sensitivity), and specificity. The confusion matrix was 

used to compute these metrics, providing a detailed understanding of the model's performance 

in distinguishing between normal and pathological images. 

Precision was calculated as the ratio of true positive predictions to the sum of true 

positive and false positive predictions. Recall (sensitivity) was determined as the ratio of true 

positive predictions to the sum of true positive and false negative predictions. Specificity was 

computed as the ratio of true negative predictions to the sum of true negative and false positive 

predictions [9]. 

Technical Considerations 

While different imaging systems and optics provided diverse data, they also introduced 

challenges related to image homogeneity and consistency. Variations in resolution, contrast, 
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and color profiles across the different systems potentially impacted the model's ability to 

generalize across all image types. This variability underscores the importance of incorporating 

a wide range of data augmentation techniques and rigorous cross-validation to ensure the 

robustness of the AI model. 

Results 

Model Performance 

In our study, we developed an AI-assisted system to identify pathological and healthy 

bladder images from cystoscopy data. The model was trained on a dataset of 500 pathological 

and 500 healthy images and later tested on a separate set of 100 pathological and 100 healthy 

images. The initial testing within the controlled environment showed high accuracy, but real-

world application yielded different results. 

Confusion Matrix 

The confusion matrix below illustrates the performance of our AI model on the test 

dataset. The matrix provides insights into true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) counts. While the AI model demonstrated high performance 

during initial testing, real-world application revealed significant challenges. The model 

achieved a sensitivity of 94%, indicating it could correctly identify 94 out of 100 pathological 

cases. However, the specificity was 58%, with 42 out of 100 healthy images incorrectly 

classified as pathological. This lower specificity suggests potential issues in distinguishing 

between certain benign structures (e.g., trabeculation, trigon area) and pathological ones 

(Figure 1). 

The sensitivity and specificity of our model are key metrics that indicate its 

effectiveness: Sensitivity: 0.94 (94%); Specificity: 0.6 (60%) 

Classification Report 

The classification report provides additional metrics including precision, recall, and F1-

score for both classes (healthy and pathological) (Table 1): 

Precision: This metric indicates the accuracy of the model in predicting positive 

instances (i.e., how many of the instances predicted as pathological are actually pathological). 

The precision for healthy images is 0.91, meaning 91% of the images predicted as healthy are 

acc
ep

ted
 m

an
usc

rip
t



indeed healthy. The precision for pathological images is 0.69, indicating that 69% of the images 

predicted as pathological are truly pathological. 

Recall (Sensitivity): Recall measures the model's ability to identify all relevant 

instances. The recall for healthy images is 0.58, meaning the model correctly identifies 58% of 

the healthy images. The recall for pathological images is 0.94, indicating that the model 

correctly identifies 94% of the pathological images. 

F1-Score: The F1-score is the harmonic mean of precision and recall, providing a single 

metric that balances both concerns. The F1-score for healthy images is 0.71, and for 

pathological images, it is 0.80. These scores indicate the overall effectiveness of the model in 

classifying each category. 

Support: Support refers to the number of actual occurrences of each class in the dataset. 

Both healthy and pathological categories have 100 images in the test set. 

Accuracy: Overall, the model has an accuracy of 75%, meaning it correctly classified 

75% of the images in the test set. 

Macro Average: This average calculates the mean performance across all classes 

without taking class imbalance into account. The macro average for precision, recall, and F1-

score is around 0.80, 0.76, and 0.75, respectively. 

Weighted Average: This average takes class imbalance into account, providing a more 

realistic measure of the model's performance. The weighted averages for precision, recall, and 

F1-score are approximately 0.80, 0.76, and 0.75, respectively. 

Overall, while the model shows high sensitivity in detecting pathological images, its 

specificity in correctly identifying healthy images is lower. This indicates a tendency to 

incorrectly classify healthy images as pathological, which is an important consideration for 

further improvements and refinements in the model. 

Discussion 

The performance of our AI model, while promising in controlled test environments, 

exhibited lower specificity in real-world applications. This discrepancy can be attributed to 

several factors related to the variability and complexity of medical imaging, particularly in 

cystoscopy. 
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One significant challenge we faced was the variability in imaging systems and optics 

used for data collection. The images were sourced from three different endovision systems 

(Storz, Striker, R. Wolf) and varied in resolution, contrast, and color profiles due to different 

optical qualities (two Storz and one R. Wolf). These differences introduced inconsistencies in 

the data, making it harder for the model to generalize across all image types. As a result, the 

model's specificity was affected, leading to a higher rate of false positives (42 out of 100 healthy 

images were misclassified as pathological) [10]. 

Our model was primarily trained to identify pathological structures based on their 

elevation and texture compared to the smooth, flat surface of healthy bladder tissue. However, 

certain benign anatomical features, such as trabeculation and the trigon area, were sometimes 

misclassified as pathological due to their elevated appearance. Additionally, areas with 

increased angiogenesis were often flagged as pathological. This indicates that while the model 

is effective in detecting deviations from the norm, it requires further refinement to differentiate 

between benign and malignant variations more accurately [3].  

Due to recent advancements in AI and machine learning, AI-assisted diagnostics has 

become an intriguing, yet not fully explored field. In our opinion, we should view neural 

network and deep learning-based models as a form of 'expert opinion' rather than an entirely 

objective diagnostic test. Notably, cystoscopy performed by a urologist is also, in essence, a 

form of 'expert opinion'. This similarity in approach makes AI-assisted diagnostic methods a 

potentially suitable application for urological procedures like cystoscopy. While AI can aid in 

identifying abnormalities and augment a clinician’s ability to detect disease, human oversight 

remains crucial for interpretation, especially in complex cases where benign and malignant 

features might overlap. Therefore, AI should complement, rather than replace, the expertise of 

the clinician in these scenarios." 

To enhance the model's performance, several strategies can be considered: 

Larger and More Homogeneous Dataset: Increasing the size of the dataset with more 

diverse images from a single, high-quality imaging system can help reduce variability. This 

would allow the model to learn more consistent features and improve generalization [7]. 

Regional Mapping of the Bladder: Dividing the bladder into specific regions (e.g., 

trigon, dome, lateral walls) and training the model to recognize patterns within these regions 

can improve accuracy. This approach ensures that the model considers the anatomical context 

when making predictions [6]. 
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Data Augmentation and Preprocessing: Implementing advanced data augmentation 

techniques, such as varying lighting conditions, rotations, and translations, can help the model 

become more robust to variations. Preprocessing steps like normalization and contrast 

adjustment can also standardize the input data, reducing discrepancies between images [11]. 

Advanced AI Techniques: Utilizing more sophisticated AI architectures, such as transfer 

learning with pre-trained models like ResNet or VGG, can enhance the model's ability to learn 

complex patterns. Ensemble learning, combining multiple models, can also provide more 

reliable predictions by mitigating the weaknesses of individual models [4]. 

The AI-assisted cystoscopy image analysis system developed in this study demonstrated 

high sensitivity in detecting urological pathologies. However, further work is needed to improve 

specificity. Our study employed a Weakly Supervised Learning approach, where not all images 

were manually labeled. To achieve more accurate results, more complex and data-intensive 

methods, such as Fully Supervised Learning, may be required. This approach could enhance 

the model's performance, particularly in distinguishing between benign and malignant 

structures more effectively." 

Artificial intelligence, particularly deep learning, relies on large datasets and high 

computational power to learn and generalize effectively. The advancements in computing 

power and the availability of big data have facilitated the integration of AI into clinical practice. 

However, the success of AI models in medical imaging heavily depends on the quality and 

consistency of the training data [12]. 

In the future, AI models could benefit from more sophisticated learning mechanisms, 

such as continual learning, where the model can adapt to new data incrementally without 

forgetting previously learned information. This approach could be particularly useful in medical 

imaging, where new data continuously becomes available [13]. 

Our study contributes to the growing body of literature on AI-assisted medical imaging 

by highlighting the challenges and potential solutions for improving model performance in real-

world applications. The successful implementation of AI in cystoscopy could significantly 

reduce the workload of urologists and improve patient outcomes by enabling earlier and more 

accurate detection of bladder pathologies. 

Future research should focus on developing standardized imaging protocols and larger, 

more diverse datasets to train AI models. Additionally, integrating AI with other diagnostic 
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tools, such as MRI or CT scans, could provide a more comprehensive assessment of urological 

conditions, further enhancing diagnostic accuracy and patient care. 

Conclusion 

The developed AI model for cystoscopy image analysis shows promise but requires 

further refinement and testing with more diverse datasets to improve its specificity. Future work 

will focus on enhancing the model's ability to accurately classify benign anatomical variations 

and integrating higher-quality images from various endovision systems to improve overall 

performance. 
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Figure 1. Illustrates the performance of our AI model on the test dataset. The matrix provides 

insights into true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN) counts. 

 

 

 

Table 1. The classification report provides additional metrics including precision, recall, and 

F1-score for both classes (healthy and pathological) 

 Precision Recall F1-Score Support 

Healthy 0.91 0.60 0.72 100 

Pathological 0.70 0.94 0.80 100 

Accuracy   0.76 200 

Macro Avg 0.80 0.77 0.76 200 

Weighted Avg 0.80 0.77 0.76 200 
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